Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures.
نویسندگان
چکیده
Evolutionary diversifications are commonly attributed to the continued modifications of a conserved genetic toolkit of developmental pathways, such that complexity and convergence in organismal forms are assumed to be due to similarity in genetic mechanisms or environmental conditions. This approach, however, confounds the causes of organismal development with the causes of organismal differences and, as such, has only limited utility for addressing the cause of evolutionary change. Molecular mechanisms that are closely involved in both developmental response to environmental signals and major evolutionary innovations and diversifications are uniquely suited to bridge this gap by connecting explicitly the causes of within-generation variation with the causes of divergence of taxa. Developmental pathways of bone formation and a common role for bone morphogenetic proteins (BMPs) in both epigenetic bone remodeling and the evolution of major adaptive diversifications provide such opportunity. We show that variation in timing of ossification can result in similar phenotypic patterns through epigenetically induced changes in gene expression and propose that both genetic accommodation of environmentally induced developmental pathways and flexibility in development across environments evolve through heterochronic shifts in bone maturation relative to exposure to unpredictable environments. We suggest that such heterochronic shifts in ossification can not only buffer development under fluctuating environments while maintaining epigenetic sensitivity critical for normal skeletal formation, but also enable epigenetically induced gene expression to generate specialized morphological adaptations. We review studies of environmental sensitivity of BMP pathways and their regulation of formation, remodeling, and repair of cartilage and bone to examine the hypothesis that BMP-mediated skeletal adaptations are facilitated by evolved reactivity of BMPs to external signals. Surprisingly, no empirical study to date has identified the molecular mechanism behind developmental plasticity in skeletal traits. We outline a conceptual framework for future studies that focus on mediation of phenotypic plasticity in skeletal development by the patterns of BMP expression.
منابع مشابه
Ontogeny of respiration and feeding structures of skull in Persian sturgeon, Acipenser persicus (Bordin, 1897)
In the present study, the process of the skull development and calcification in Persian sturgeon (Acipenser persicus) was studied. Development of cartilage started after hatching around the head and notochord (10.6 mm, total length, TL) and the first calcification process occurred in dermopalatine and dentary bone jaw coincident with mixing feeding. The appearance of dermal skeletal on the body...
متن کاملINVESTIGATION OF METHYLATION OF TNF-Α GENE PROMOTER IN PATIENTS WITH TYPE 2 DIABETES
Background: Type II diabetes is a chronic inflammatory condition that is associated with a combination of genetic and environmental factors. Tumor necrosis factor alpha or TNF-α as an adipocyte cytokine, which affects the signaling pathway of insulin, can contribute to insulin resistance in type 2 diabetes patients. Considering the importance of epigenetic changes in multifactorial diseases, th...
متن کاملمکانیسمهای اپیژنتیک و نقش آنها در بروز و درمان سرطان: مطالعه مروری
Both genetic and epigenetic changes are effective in cancer incidence and development. . .Epigenetic processes are alternations of DNA and histones conformations, chromatin remodeling, DNA methylation, post-translational modifications of histones and microRNAs patterns which are associated with genes expression or inhibition of them in cells. Some of reversible epigenetic changes such as DNA an...
متن کاملDNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation
An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2007